Máy học véc tơ hỗ trợ là gì? Các công bố khoa học về Máy học véc tơ hỗ trợ
Máy học véc tơ hỗ trợ (Support Vector Machine - SVM) là một thuật toán học có giám sát được sử dụng trong lĩnh vực học máy để xây dựng mô hình dự đoán và phân l...
Máy học véc tơ hỗ trợ (Support Vector Machine - SVM) là một thuật toán học có giám sát được sử dụng trong lĩnh vực học máy để xây dựng mô hình dự đoán và phân loại. Thuật toán này dựa trên cơ sở ý tưởng tìm kiếm một ranh giới phân chia (đường phân chia) tối ưu giữa các điểm dữ liệu thuộc vào các nhóm khác nhau.
Máy học véc tơ hỗ trợ cố gắng tối đa hoá khoảng cách giữa đường phân chia và các điểm dữ liệu gần nhất, có tên gọi là vector hỗ trợ. Thuật toán sử dụng các phép biến đổi không gian (kernel) để có thể tìm được đường phân chia tối ưu ngay cả khi dữ liệu không phân chia tuyến tính được.
Với tính linh hoạt trong việc xử lý dữ liệu, SVM có thể được áp dụng trong nhiều bài toán khác nhau như phân loại hình ảnh, nhận dạng chữ viết tay, phân loại văn bản, và nhiều ứng dụng khác.
Để hiểu chi tiết hơn về máy học véc tơ hỗ trợ, hãy xem qua các khái niệm và các bước thực hiện cơ bản của thuật toán SVM:
1. Khái niệm căn bản:
- Vector hỗ trợ: Là các điểm dữ liệu gần nhất với đường phân chia (đường biên). Vector hỗ trợ quyết định vị trí và hình dạng của đường phân chia.
- Đường phân chia tối ưu: Là đường thẳng, mặt phẳng, hoặc siêu phẳng trong không gian n chiều, tách hoặc phân chia các điểm dữ liệu thuộc vào các nhóm khác nhau. Mục tiêu của SVM là tìm ra đường phân chia tối ưu có thể phân loại đúng nhưng còn đảm bảo độ tổng quát cao (không bị overfitting).
2. Bước thực hiện cơ bản:
- Chuẩn bị dữ liệu: Dữ liệu huấn luyện (training data) cần được chuẩn bị trước. Mỗi điểm dữ liệu sẽ được biểu diễn dưới dạng véc tơ. Nếu dữ liệu là không phân chia tuyến tính, một phép biến đổi không gian (kernel) sẽ được sử dụng để biến đổi dữ liệu vào một không gian mới có thể phân chia tuyến tính.
- Xây dựng mô hình: Mục tiêu là tìm ra đường phân chia tối ưu. Đường phân chia tối ưu sẽ được xác định bằng cách tìm kiếm đường biên (biên cực đại) sao cho khoảng cách từ đường biên đến các điểm dữ liệu gần nhất là lớn nhất.
- Học mô hình: Thuật toán SVM sẽ tối ưu hóa các thông số của mô hình bằng cách giải một bài toán tối ưu hóa. Mục tiêu là tìm ra các trọng số tối ưu cho mô hình, đồng thời xác định các vector hỗ trợ.
- Dự đoán: Sau khi mô hình đã được huấn luyện, nó có thể được sử dụng để dự đoán nhãn của các điểm dữ liệu mới. Dự đoán dựa trên việc so sánh vị trí của điểm dữ liệu mới với đường phân chia tối ưu đã xác định.
Trên thực tế, thuật toán SVM có thể được tùy chỉnh bằng cách thay đổi các thông số như kernel (linear, polynomial, RBF, sigmoid,...), thông số C (khi xác định độ ràng buộc cho các điểm dữ liệu) và thông số gamma (trong kernel RBF). Những thay đổi này có thể ảnh hưởng đến hiệu suất của mô hình SVM.
Danh sách công bố khoa học về chủ đề "máy học véc tơ hỗ trợ":
- 1
- 2